

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

RELIABILITY-BASED DESIGN OPTIMIZATION
USING BUFFERED FAILURE PROBABILITY

by

Habib Gurkan Basova

June 2010

 Thesis Advisor: Johannes O. Royset
 Second Reader: R. Kevin Wood

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Reliability-Based Design Optimization Using Buffered
Failure Probability
6. AUTHOR(S) Habib Gurkan Basova

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ________________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
 A

13. ABSTRACT

Reliability-based design optimization (RBDO) seeks the best design for a structural system under uncertainty.
Typically, uncertainty arises from random loads such as wind pressure and random material properties such as yield
stress. A reliable design must account for uncertainties to ensure safety.

Various methods have been proposed to solve the nonlinear optimization models that RBDO uses. However,
these methods are theoretically and computationally troublesome as they involve constraints on failure probability,
and failure probability is difficult to handle in optimization algorithms. This thesis considers an alternative approach
to RBDO that uses the “buffered failure probability,” and develops four new solution algorithms based on sample-
average approximations. Buffered failure probability is more conservative than failure probability and it is much
easier to handle in optimization algorithms.

We test the algorithms on six engineering-design examples from the literature. The examples range from simple
systems with two design variables to complicated ones with ten. Results show that the new algorithms may reduce
solution time by an average factor of 560 compared to an existing algorithm. Furthermore, they can handle problem
instances with two orders of magnitude larger sample sizes, which may be important for reasons of accuracy.

15. NUMBER OF
PAGES

73

14. SUBJECT TERMS Reliability-based Design Optimization, Failure Probability, Buffered Failure
Probability, Structural Reliability.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

RELIABILITY-BASED DESIGN OPTIMIZATION USING BUFFERED
FAILURE PROBABILITY

Habib Gurkan Basova
Captain, Turkish Army

B.S., Turkish Military Academy, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2010

Author: Habib Gurkan Basova

Approved by: Johannes O. Royset
Thesis Advisor

R. Kevin Wood
Second Reader

Robert F. Dell
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Reliability-based design optimization (RBDO) seeks the best design for a structural

system under uncertainty. Typically, uncertainty arises from random loads such as wind

pressure and random material properties such as yield stress. A reliable design must

account for uncertainties to ensure safety.

Various methods have been proposed to solve the nonlinear optimization models

that RBDO uses. However, these methods are theoretically and computationally

troublesome as they involve constraints on failure probability, and failure probability is

difficult to handle in optimization algorithms. This thesis considers an alternative

approach to RBDO that uses the “buffered failure probability,” and develops four new

solution algorithms based on sample-average approximations. Buffered failure

probability is more conservative than failure probability and it is much easier to handle in

optimization algorithms.

We test the algorithms on six engineering-design examples from the literature.

The examples range from simple systems with two design variables to complicated ones

with ten. Results show that the new algorithms may reduce solution time by an average

factor of 560 compared to an existing algorithm. Furthermore, they can handle problem

instances with two orders of magnitude larger sample sizes, which may be important for

reasons of accuracy.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. MOTIVATION ..1
C. SCOPE AND LIMITATIONS..2
D. LITERATURE REVIEW ...3

II. BACKGROUND AND PROBLEM DEFINITION ..5
A. LIMIT-STATE FUNCTIONS AND FAILURE PROBABILITY...............5
B. DESIGN OPTIMIZATION OF A SYSTEM SUBJECT TO A

FAILURE PROBABILITY CONSTRAINT...6
C. BUFFERED FAILURE PROBABILITY..8

III. ALGORITHMS FOR RBDO BASED ON BUFFERED FAILURE
PROBABILITY..15
A. ALGORITHMS WITH FIXED SAMPLE SIZE..15

1. Algorithm 1: Reformulation of BP Using Sampling and
Auxiliary Variables..15

2. Algorithm 2: External Active-Set Strategy......................................17
3. Algorithm 3: Exponential Smoothing of Max-Function.................18

B. ALGORITHMS WITH INCREASING SAMPLE SIZE...........................19
1. Algorithm 4: Adaptive Sample-Size Algorithm20
2. Algorithm 5: Adaptive Sample Size Algorithm with Active-Set

Strategy ...21

IV. NUMERICAL EXAMPLES ...23

V. CONCLUSIONS AND RECOMMENDATIONS...37
A. CONCLUSIONS ..37
B. SUGGESTED WORK AHEAD..38

LIST OF REFERENCES..39

APPENDIX...43

INITIAL DISTRIBUTION LIST ...53

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Example Probability Density Function (pdf) for ˆ(,)g x V when That
Function is Normally Distributed ..9

Figure 2. Example Cumulative Distribution Function (cdf) for ˆ(,)g x V when That
Function is Normally Distributed ..10

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Comparison of Solutions Using Failure and Buffered Failure Probabilities
for a Knapsack Problem with 2~ (3.5,0.1),V N (2,1),c′ = (1.1, 2.1),w′ =
and α = 0.99 ..13

Table 2. Overview of Examples (# DV Denotes Number of Design Variables, # LS
Denotes Number of Limit-state Functions, # RV Denotes Number of
Random Variables) ..24

Table 3. Results for Algorithms 1–3 on Example 1...25
Table 4. Results for Algorithms 1–3 on Example 2...25
Table 5. Results for Algorithms 1–3 on Example 3...26
Table 6. Results for Algorithms 1–3 on Example 4...26
Table 7. Results for Algorithms 1–3 on Example 5...26
Table 8. Results for Algorithms 1–3 on Example 6...27
Table 9. Run Times (sec) for Algorithm 2 on Example 5 with N = 12000 Given

Different Algorithm Parameter Settings ..28
Table 10. Run Times (sec) for Algorithm 2 on Example 5 with N = 120000 Given

Different Algorithm Parameter Settings ..28
Table 11. Run Times (sec) for Algorithm 2 on Example 6 with N = 12000 Given

Different Algorithm Parameter Settings ..28
Table 12. Run Times (sec) for Algorithm 2 on Example 6 with N = 120000 Given

Different Algorithm Parameter Settings ..29
Table 13. Objective Function Value Differences (in 10-7) for the Parameter

Selections with Respect to Objective Function of the Base Parameter
Choice (with Algorithm 2 on Example 5 with 12000)N =29

Table 14. Objective Function Value Differences (in 10-7) for the Parameter
Selections with Respect to Objective Function of the Base Parameter
Choice (with Algorithm 2 on Example 6 with 120000)N =30

Table 15. Algorithm 3 on Example 1 with Different p Values......................................30
Table 16. Parameter Comparison for Example 6 with Algorithm 4 Starting From

Initial N = 1000 With 15-Minute Run Time Limit31
Table 17. γ Comparison With Algorithm 5 on Example 1 with Initial

1000, 0.1, 0.5, 20N e s n= = = = with 15-Minute Run Time Limit32
Table 18. Results for Algorithms 4 and 5 on Example 1 with 15-Minute Run Time......33
Table 19. Results for Algorithms 4 and 5 on Example 2 with 60-Minute Run Time......33
Table 20. Results for Algorithms 4 and 5 on Example 3 with 30-Minute Run Time......34
Table 21. Results for Algorithms 4 and 5 on Example 4 with 60-Minute Run Time......34
Table 22. Results for Algorithms 4 and 5 on Example 5 with 60-Minute Run Time......34
Table 23. Results for Algorithms 4 and 5 on Example 6 with 60-Minute Run Time......35
Table 24. Computational Comparisons of Failure Probabilities and Buffered Failure

Probabilities ...36
Table 25. Design Variable Descriptions and Bounds for Example 143
Table 26. Random Variable Descriptions and Distribution Parameters for Example 1 ..43

 xii

Table 27. Design Variable Descriptions and Bounds for Example 244
Table 28. Random Variable Descriptions and Distribution Parameters for Example 2 ..44
Table 29. Design Variable Descriptions and Bounds for Example 345
Table 30. Random Variable Descriptions and Distribution Parameters for Example 3 ..45
Table 31. Design Variable Descriptions and Bounds for Example 446
Table 32. Random Variable Descriptions and Distribution Parameters for Example 4 ..46
Table 33. Design Variable Descriptions and Bounds for Example 547
Table 34. Random Variable Descriptions and Distribution Parameters for Example 5 ..48
Table 35. Design Variable Descriptions and Bounds for Example 649
Table 36. Random Variable Descriptions and Distribution Parameters for Example 6 ..50

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

α Reliability Level

MCS Monte Carlo Simulation

()p x Failure Probability

()p x Buffered Failure Probability

PMA Performance Measure Approach

RBDO Reliability-Based Design Optimization

RIA Reliability Index Approach

()q xα -α quantile

()q xα -α superquantile

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Reliability-based design optimization (RBDO) deals with how to best design a

structural system under uncertainty while considering reliability constraints. Uncertainty

present in engineering systems typically arises from random loads such as wind pressure

and random material properties such as buckling stress. A reliable design must account

for these uncertainties in order to ensure safety.

Various methods have been proposed to solve the nonlinear optimization models

that RBDO uses. However, these methods are theoretically and computationally

troublesome as they involve constraints on failure probability, and failure probability is

difficult to handle in nonlinear optimization algorithms. The constraints based on failure

probability may yield difficult-to-solve optimization problems.

This thesis considers an alternative approach to RBDO that uses “buffered failure

probability,” and considers five solution algorithms based on sample-average

approximations. The buffered failure probability approach is more conservative than the

traditional approach based on the failure probability, meaning that a design that satisfies a

reliability constraint based on buffered failure probability is guaranteed to satisfy one

based on failure probability. The buffered failure probability is also much easier to handle

in nonlinear optimization algorithms.

The first three algorithms each solve models that incorporate a single sample-

average approximation of the buffered failure probability constraint. Algorithm 1 is a

well-known method based on a model reformulation and solves a single, large nonlinear

program. Algorithms 2–5 are new algorithms developed in this thesis. Algorithm 2 is an

active-set implementation of Algorithm 1. Algorithm 3 uses exponential smoothing of a

max-function to avoid the large-scale reformulation of Algorithm 1. Algorithm 4

approximately solves a sequence of sample-average approximations within an adaptive

sample-adjustment scheme that ensures the sample size is gradually increased to infinity.

Algorithm 5 is similar to Algorithm 4, but includes an active-set strategy.

 xvi

We test the algorithms on six engineering-design examples from the literature.

The examples range from simple systems with two design variables to complicated ones

with ten design variables. Results from Algorithm 2 show an average speed-up in

solution time by a factor of 560 over Algorithm 1. Algorithm 3 exhibits a speed-up by a

factor of 31 over Algorithm 1. Algorithms 2 and 3 can handle problem instances with

large sample sizes, in fact, one and two orders of magnitude larger than that of Algorithm

1, respectively. The ability to handle large sample sizes is important, for reasons of

accuracy. Algorithms 4 and 5 obtain high-quality solutions in minutes without the need

for a user to specify a sample size, which may be difficult in practice.

The results in this thesis show that Algorithms 2–5 have significantly improved

engineers’ ability to relatively quickly generate cost efficient designs that satisfy a failure

probability constraint.

 xvii

ACKNOWLEDGMENTS

I would like to extend my personal thanks to Professor Johannes O. Royset, for

his clear guidance and constant availability. With his unwavering patience this difficult

process has become an exceptional learning opportunity. I could not have completed this

research without his tireless efforts.

I also wish to thank Professor R. Kevin Wood for his dedicated efforts to ensure

this study to be genuine research writing. His editing contribution and professional

insight ensured the highest standard in this thesis.

I want to thank my wife, Medalet, for her unconditional love, precious support

and endless patience in the midst of this challenge and my daughter, Elif, for enduring

days without dad so I could finish this work.

Finally, I would like to offer my special thanks to my country, Turkey, for

providing me the unique opportunity to attend the Operations Research program at NPS.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT

This thesis considers the reliability-based design-optimization problem (RBDO)

of minimizing the design cost of a structural system subject to a constraint on its

reliability and other quantities. We characterize a system’s reliability in terms of the

probability of failure with respect to one or more performance requirements.

We approximate this problem by replacing the failure probability constraint with

a buffered failure probability constraint and develop four algorithms for solving the

resulting nonlinear program.

B. MOTIVATION

Engineers aim to minimize design costs of structural systems such as aircraft

wings, vehicle frames, ship hulls, bridges, and buildings. The minimization typically is

subject to one or more constraints on system reliability. The parameters that describe the

shape and characteristics of the system are referred to as design variables. These variables

are controlled by the engineer and are manipulated so that the cost of the system is

minimized and the reliability is sufficiently large. Therefore, the challenge for an

engineer is to reduce the design cost while satisfying requirements for system

performance and reliability.

A system’s reliability accounts for uncertain loads that act on the system, and the

uncertain capacity of the system to withstand these loads. There are a variety of

uncertainties that engineers need to consider. A system’s performance depends on the

type and magnitude of loads and the strength of the system, which is related to properties

of materials used in the design. The loads and system strength can be described by

random (uncontrollable) variables. As an example, for a building, wind pressure is an

uncontrollable load that can be modeled using random variables. The loads may lead the

system to not being able to meet functional and safety requirements. The result can be

 2

loss of serviceability, or a complete destruction of the system. The functional

requirements are called limit states of the system and, when they are exceeded, we say

that the system is failed.

Various methods have been proposed for solving the nonlinear programs arising

in RBDO. However, these methods are theoretically and computationally troublesome as

they involve the failure probability, which may be nonsmooth and nonconvex and

therefore difficult to handle by standard nonlinear programming solvers such as SNOPT

(Gill, Murray, & Saunders, 1998), LANCELOT (Conn, Gould, & Toint, 1992), and

NLPQL (Schittkowski, 1985). This thesis explores another approach to RBDO based on

buffered failure probability. The buffered failure probability approach is more

conservative than the traditional approach based on the failure probability (Rockafellar &

Royset, 2010). Thus, a design that satisfies the reliability constraint based on the buffered

failure probability also satisfies one based on the failure probability. The buffered failure

probability is computationally easier to handle due to the algorithmic advances of this

thesis. Rockafellar and Royset (2010) also discuss other potential advantages that

buffered failure probability has over failure probability in this context. However, this

thesis shows that the computational advantages alone are sufficient to warrant a

preference for the buffered failure probability approach.

C. SCOPE AND LIMITATIONS

We represent uncertainties as random variables. In principle, the random variables

can be either discrete or continuous. However, we only consider continuous random

variables in this thesis.

We assume that we know the joint distribution of the random variables and that

the corresponding cumulative distribution function is strictly increasing.

A real-life structural system generally is composed of several components. If

failure of any one of these components constitutes failure for the entire system, then we

call the structure a series system. In contrast, parallel systems are those that need the

failure of all the components for a system failure. In this thesis, we focus on series

systems with, consequently, one failure probability constraint.

 3

D. LITERATURE REVIEW

The classical methods for solving the RBDO perform a double-loop approach: an

outer optimization loop and an inner reliability assessment loop; see Du and Chen (2004).

The reliability assessment is performed by two different methods: Reliability Index

Approach (RIA) (Lee, Yang, & Ruy, 2002) or Performance Measure Approach (PMA)

(Tu, Choi, & Park, 1999). Both of these methods approximate the failure probability by

surrogates of unknown accuracy and hence cannot guarantee the convergence to globally,

locally, or stationary solutions of RBDO problems. A single-loop RBDO approach is

proposed by Liang, Mourelatos, and Tu (2008). This method utilizes the fact that a

surrogate for the failure probability can be evaluated by solving a nonlinear program.

Hence, the RBDO problem with a failure probability constraint can be approximated by

an optimization model with equilibrium constraint. However, the resulting model may be

difficult to solve due to nonconvexity, nonsmoothness, and/or lack of a constraint

qualification. Moreover, as the accuracy of the surrogate for the failure probability is

unknown, the computed design may be nonoptimal and violate failure probability

constraints. We refer to Rockafellar and Royset (2010) and Royset, Der Kiureghian, and

Polak (2006) for a more comprehensive literature review and difficulties associated with

current approaches.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND AND PROBLEM DEFINITION

A. LIMIT-STATE FUNCTIONS AND FAILURE PROBABILITY

A system response relative to a functional requirement, viewed as a function of

the design and random variables, is referred to as a limit-state function and denoted by

(,)g x V . Here x = (x1,x2,...,xn ′) is a vector of design variables (where prime ′ denotes

the transpose of a vector) and 1 2(, ,...,)mV V V V ′= is a vector of random variables. The

joint probability distribution of the random variables is known. We denote realizations of

V by .v For a given x, g(x,v) represents the performance of the system under

realization v of V . An unsatisfactory performance, i.e., “failure,” occurs when

(,) 0g x v > . If (,) 0g x v ≤ then the system performance is acceptable.

In complex systems, there may be multiple limit-state functions; for example, see

Example 5 in the Appendix, taken from Rao (2009, pp. 472–473). We denote these

functions as gk (x,v) , k ∈K , where {1, 2,..., }.K m= We also define

 { }(,) max (,) .kk K
g x v g x v

∈
= (1)

We can characterize the reliability of the system by its failure probability defined

by

 []() (,) 0 .p x Prob g x V= > (2)

The following simplified example illustrates a design process based on the failure

probability. (Note: For clarity, this example uses discrete ,x but we note that this thesis

develops solution methods only for continuous .x)

Example 1. A TOW missile is a heavy anti-tank missile. One component of the

missile’s launcher is an optical system. Suppose that two different optical systems, 1 and

2, are available for incorporation in a final design: setting 1ix = means system i is

selected and 0ix = , otherwise. The decision maker plans to procure and incorporate the

system with lower failure probability. Systems 1 and 2 have an operational capability

down to −28 °F and −30 °F, respectively. The procurement cost of system 2 is higher

 6

than system 1. The missile will be operated under severe conditions in a certain mission

area. Let V represent the random temperature in Fahrenheit degrees, which is known to

be normally distributed with mean −20 °F and standard deviation 3 °F in that area.

Engineers have characterized the reliability of the system by the following limit-state

function

 1 2(,) 0.9 28 30 ,g x v v x x= − − − (3)

where x1 + x2 = 1 and x1, x2 ∈{0,1}. The coefficient 0.9 is a scaling factor and represents

the impact of the current temperature on the system. If (,)g x v is positive for a given

temperature v , the system fails. We compute that designs 1 and 2 have failure

probabilities of 41.06 10−× and 64.406 10−× , respectively. Thus, system 2 will be

procured.

For a given design x , the computation of failure probability requires the

evaluation of a high-dimensional integral. That is,

 () 1() ... (,) () ... ,V mp x I g x v f V dv dv= ∫ ∫ (4)

where fV (V) is the joint probability density function for the random vector ,V and

() 1I z = if 0,z > and () 0I z = otherwise.

B. DESIGN OPTIMIZATION OF A SYSTEM SUBJECT TO A FAILURE
PROBABILITY CONSTRAINT

Engineers often seek to solve the design-optimization problem (Rockafellar &

Royset, 2010)

: min ()

 s.t. () 1

,x

f xx

p x

X

α

∈

≤ −

P

 (5)

where f (x) is a deterministic and continuously differentiable cost function for the

system, X is a continuous region of allowable designs, and α is a desired reliability

level in (0,1]. We also assume that X is convex.

 7

Problem P represents the current approach to RBDO. Typically, P is difficult to

solve even approximately because the computation of the failure probability in (4) is

computationally challenging. Furthermore, the integrand in (4) is non-smooth, i.e., is not

differentiable at every point, and this may cause difficulties during optimization.

Moreover, p(x) is generally nonconvex. With lack of convexity, a solution algorithm

may yield only a locally optimal solution.

Solving P is also difficult because computation of the failure probability requires

the evaluation of the high-dimensional integral in (4). For a real-world system, the limit-

state functions are highly complex and involve many different random variables. (See

Example 6 in the Appendix, taken from Samson, Thoomu, Fadel, & Reneke 2009).

Consequently, failure reliability can only be estimated: the standard approach uses Monte

Carlo simulation (MCS) (Melchers, 1999; Choi, Grandhi, & Canfield, 2007).

MCS is a sampling method that estimates expectation and probability. When

estimating the probability of failure, MCS computes the following estimate of the

probability of failure in (4):

1

1ˆ () ((,)),
N

j

j
p x I g x v

N =

= ∑ (6)

where N is the number of random, sampled, vector realizations v j . The function p̂(x) is

an unbiased estimator of p(x) (Rubinstein & Kroese, 2008). The standard deviation of

p̂(x) is inversely proportional to the square root of the sample size N . Hence, the

accuracy of failure probability estimates is poor for small samples, especially for small

failure probabilities. Therefore, replacing the failure probability by its estimator in (6)

computed with a large N leads to long solution times for sampled approximations to P.

Furthermore, (6) is not differentiable because of the indicator function, and this may

cause convergence difficulties for standard nonlinear optimization algorithms. We refer

to Rockafellar and Royset (2010) for more detailed explanations of difficulties associated

with ()p x .

 8

C. BUFFERED FAILURE PROBABILITY

As discussed above, the failure probability has several undesirable properties that

may cause difficulties for a standard nonlinear optimization algorithm. We now introduce

an alternative approach to the design-optimization problem using another measure of

failure, the buffered failure probability (Rockafellar & Royset, 2010). The buffered

failure probability approach is based on the conditional value-at-risk (Rockafellar &

Uryasev, 2000; Rockafellar & Uryasev, 2002), which is used in financial engineering to

compute optimal investment portfolios. We next define the buffered failure probability.

Suppose we wish to solve P with a failure probability level 1 α− . Instead of

imposing the constraint () 1 ,p x α≤ − we introduce () 1p x α≤ − as an alternative,

where ()p x denotes the buffered failure probability (Rockafellar & Royset, 2010). A

design that satisfies the buffered failure probability constraint also satisfies the failure

probability requirements, as we describe later, and the constraint () 1p x α≤ − is easier

to handle computationally. The following description follows Rockafellar and Royset

(2010) closely.

Let the cumulative distribution function of (,)g x V be denoted by

 ()() (,) ,xF Prob g x Vγ γ= ≤ (7)

which we assume to be continuous and strictly increasing. We next define the -α quantile

function, or simply -α quantile, which is denoted as qα (x). For a probability level ,α

 1() ().xq x Fα α−= (8)

In addition, we define the -α superquantile function, or simply -α superquantile, by

 []() (,) | (,) () .q x E g x V g x V q xα α= ≥ (9)

Integration is also useful in finding the superquantile. That is,

11() () .

1
q x q x dα β

α

β
α

=
− ∫ (10)

The superquantile can be interpreted as the value of (,)g x V that splits the area under the

probability density function in the interval [qα (x),∞) into two balancing parts. That is, it

represents the average value of the limit-state function, conditioned on (,)g x V being no

 9

less than the -α quantile. The superquantile is identical to the conditional value-at-risk,

but we follow Rockafellar and Royset (2010) here and use the term superquantile. When

the superquantile equals zero at a probability level α , then the buffered failure

probability ()p x is equal to 1 .α− Hence, the buffered failure probability may be

defined as

0

() (,) () ,p x Prob g x V q xα⎡ ⎤= ≥⎣ ⎦ (11)

where 0α is such as
0
() 0q xα = (Rockafellar & Royset, 2010).

Figure 1 illustrates the probability density function for an example limit-state

function at a fixed ˆ,x x= where 0α has been identified such that
0

ˆ() 0.q xα =
0

ˆ()q xα splits

the area under the probability density function to the right of 2− into two balancing parts.

Hence, the quantile
0

ˆ() 2q xα = − . We also see in Figure 2, which represents the

cumulative distribution function for the same limit-state function, that 0α therefore must

equal 0.85. Thus, we calculate the buffered failure probability for this example as

1 0.85,− which is 0.15.

0
ˆ() 2q xα = − 0

ˆ() 0q xα =

Figure 1. Example Probability Density Function (pdf) for ˆ(,)g x V when That
Function is Normally Distributed

ˆ(,)g x v

 10

1
ˆ() 0q xα =

0
ˆ() 2q xα = −

0 0.85α =
1 0.96α =

Figure 2. Example Cumulative Distribution Function (cdf) for ˆ(,)g x V when That
Function is Normally Distributed

In general, for any α value and any ,x X∈ () ()q x q xα α≤ and thus

() ().p x p x≤ Hence, the buffered failure probability is a conservative estimate of the

failure probability. The relationship () ()p x p x≤ is easily obtained from the following

argument. Suppose ˆx x= is fixed, and 0α is chosen so that 0
ˆ() 0.q xα = Then, by the

definition of the superquantile, it follows that
0

ˆ() 0.q xα ≤ Since
0

ˆ() 0,q xα = the buffered

failure probability ˆ()p x equals to 01 .α− It follows from the definition of the failure

probability that if
1

ˆ() 0q xα = for some 1,α then 1ˆ() 1 .p x α= − Since
0 1

ˆ ˆ() (),q x q xα α≤ it

must be true that 0 1.α α≤ Thus, 01 α− is no smaller than 11 .α− Since the arguments

above hold for any x̂ X∈ we have the result that () ()p x p x≤ for all .x X∈ Figure 2

illustrates this situation with 1 0.96,α = 0 0.85,α =
1

ˆ() 0,q xα = and
0

ˆ() 2.q xα = −

The computation of the buffered failure probability appears cumbersome. As we

see below, however, we never directly use this definition in computations and instead use

alternative expressions easily incorporated in optimization models.

ˆ(,)g x v

ˆ((,))xF g x v

 11

The buffered failure probability constraint p(x) ≤ 1−α is satisfied if

 () 0.q xα ≤ (12)

Rockafellar and Uryasev (2002) show that for any x X∈

0

0 () min (,),
z

q x z xα αφ= (13)

where 0z is an auxiliary design variable and

 { }0 0 0
1(,) max 0, (,) .

1
z x z E g x V zαφ α

= + −⎡ ⎤⎣ ⎦−
 (14)

Therefore, a design x X∈ and a value for 0z that satisfy

 0(,) 0z xαφ ≤ (15)

also satisfy p(x) ≤ 1−α.

Although p(x) generally overestimates (),p x the numerical examples that we

discuss in Chapter IV show that the difference between the two probabilities need not be

great.

We can formulate a restriction of P, by replacing the reliability constraint in P

with (15). Thus, a restriction to P using buffered failure probability takes the form

 { }

0

0 0

,
: min ()

1 s.t. max 0, (,) 0
1

 .

x z
f x

z E g x V z

x X

α
+ − ≤⎡ ⎤⎣ ⎦−

∈

BP

 (16)

With BP being a restriction of P, the solution of BP is also feasible in P, but may not be

optimal in P. However, the constraint (16) is easier to handle than (5) as it is convex

when each (,), kg x v k K∈ is convex in x for all v (Rockafellar & Royset, 2010).

Moreover, in contrast to the nonsmoothness of the indicator function in (4), the

nonsmoothnesss in (16) is easily handled (as described in Chapter III). Thus, computation

of optimal values is easier in BP than in P. We also note that the buffered failure

probability accounts for the tail of the distribution of (,)g x V in a different way than does

failure probability. We refer to Rockafellar and Royset (2010) for a discussion of why

this might be an advantage for RBDO.

 12

We next illustrate the failure probability and buffered failure probability

approaches on a stochastic, continuous knapsack problem with random knapsack

capacity. Let c and w be deterministic vectors of per-unit item values and item weights,

respectively, let α be a user-defined reliability level, let V be a random variable

describing the total capacity of the knapsack in terms of weight, and let x be a vector of

decision variables that chooses the amount of each item to placed in the knapsack. We

assume that V is normally distributed with mean μ and standard deviation σ . The

knapsack problem then takes the form:

 .

 : max

 s.t. ()

0

c xx

Prob w x V

x

α

′

′ ≤ ≥

≥

KP

 (17)

In our notation, this problem instance has only one limit-state function:

 (,) .g x V w x V′= − (18)

Since limit-state function values greater than zero represent failure, the following

equation becomes the reliability constraint:

 (0) 1 ,Prob w x V α′ − > ≤ − (19)

where ′w x − V is normally distributed with mean ′w x − μ and standard deviation σ .

The reliability constraint in (19) takes the following form:

 0 ()1 1 ,w x V α
σ
′− −⎛ ⎞−Φ ≤ −⎜ ⎟

⎝ ⎠
 (20)

where ()Φ ⋅ represents the cumulative distribution function of the standard normal

distribution. Thus, the problem KP is equivalent to

 1

: min

 s.t. () 0

 0.

c xx

w x

x

μ σ α−

′ ′−

′ − + Φ ≤

≥

KP

 (21)

Next, we consider the buffered failure probability approach. In this case BP takes the

form

 13

: min

 s.t. () 0

0.

c xx

q x

x

α

′−

≤

≥

KBP

 (22)

Since g(x,V) is normally distributed with mean ′w x − μ and standard deviation σ , the

superquantile qα (x) is easily computed (Truncated Normal Distribution, Wikipedia, n.d.)

and we obtain

 ()()
() ,

1
q x

q x α
α

σ φ
μ

α
= +

−
 (23)

where ()φ ⋅ is the standard normal probability density function. Therefore, KBP takes the

following equivalent form:

 ()1

: min

 ()
 s.t. 0

1

0.

c xx

w x

x

σ φ α
μ

α

−

′ ′−

Φ
′ − + ≤

−

≥

KBP

 (24)

Thus, for this knapsack problem, the difference between the reliability constraints of the

failure and buffered failure probabilities corresponds to the difference between (21) and

(24). Table 1 gives the near-optimal solutions of K ′P and KB ′P when V is normally

distributed with mean 3.5 and standard deviation 0.1, ′c = (2,1) , ′w = (1.1,2.1) , and

α = 0.99 . From Table 1 we see that the buffered failure probability approach results in a

conservative design, with a failure probability that is about 40% lower than required.

Problem x1 x2 c x′− ()p x

K ′P 1.06124 1.00000 ‐3.12248 0.0100

KB ′P 1.03043 1.00000 ‐3.06087 0.0039

Table 1. Comparison of Solutions Using Failure and Buffered Failure Probabilities
for a Knapsack Problem with 2~ (3.5,0.1),V N (2,1),c′ = (1.1, 2.1),w′ = and

α = 0.99

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. ALGORITHMS FOR RBDO BASED ON BUFFERED FAILURE
PROBABILITY

This chapter examines five algorithms that exploit the properties of buffered

failure probability to compute an approximated solution of BP in a relatively short time

and with high accuracy. Since BP is a restriction of P, each solution also represents an

approximate solution of P. Algorithm 1 is a well-known method based on the solution of

a reformulation of BP. Algorithms 2–5 are new algorithms developed in this thesis.

Algorithm 2 is an active-set strategy implementation of Algorithm 1. Algorithm 3

implements exponential smoothing of the max-function in (16) and proceeds to solve a

smoothed problem. Algorithms 1–3 approximate the expectation 0[max{0, (,) }]E g x v z−

in (16) by its sample average for a fixed sample size N , i.e.,

 { }0
1

1 max 0, (,)
N

j

j
g x v z

N =

−∑ (25)

with random vector realizations jv , 1, 2,...,j N= . Thus, the reliability constraint in (16)

takes the following form:

 { }0 0
1

1 max 0, (,) 0.
(1)

N
j

j
z g x v z

N α =

+ − ≤
− ∑ (26)

Algorithm 4 implements an adaptive sample-adjustment scheme that ensures the

sample size is gradually increased to infinity. Iterates generated by Algorithm 4 are

guaranteed to converge to a stationary point of BP (Royset, 2010b). Algorithm 5 is

similar to Algorithm 4 but includes an active-set strategy. We next discuss each algorithm

in turn.

A. ALGORITHMS WITH FIXED SAMPLE SIZE

1. Algorithm 1: Reformulation of BP Using Sampling and Auxiliary
Variables

The constraint (26) is non-smooth and is therefore not tractable by standard

nonlinear optimization algorithms. Algorithm 1, an existing algorithm, uses a

 16

reformulation to overcome this difficulty. This reformulation was first proposed in

Rockafellar and Royset (2010).

We introduce auxiliary variables zj , j = 1,...,N , and find that for any j ,

 { }0max 0, (,)j
jg x v z z− ≤ (27)

is equivalent to

 0 jz≤ (28)

and

 0(,) .j
jg x v z z− ≤ (29)

Hence, we can use (28) and (29) to reformulate the “max” part of the constraint in (26).

This results in the following transcription:

0

1

,
: min ()

1 s.t. 0
(1)

N

N

j
j

x z
f x

z z
N α =

+ ≤
− ∑

BP

 (30)

 0(,) , j
k jg x v z z j J k K− ≤ ∀ ∈ ∀ ∈ (31)

 0, jz j J≥ ∀ ∈ (32)

,x X∈

where z = (z0 , z1,..., zN ′) and {1,2,..., }J N= . For large N , BPN is approximately

equivalent to BP (Rockafellar & Royset, 2010). However, BPN necessitates introducing a

new auxiliary design variable, i.e., zj , for every realization of the random vector: This

typically results in large-scale problems. Given BPN, our first algorithm takes the

following simple form:

Algorithm 1: Apply a standard nonlinear solver to BPN.

We use the SNOPT (Gill et al. 1998) solver here and below in the following algorithms

in computational experiments.

 17

2. Algorithm 2: External Active-Set Strategy

BPN becomes a large-scale problem as N increases. Algorithm 2 aims to

overcome this difficulty by using an active-set strategy proposed in Chung, Polak, and

Sastry (2010).

In this approach, we do not let the standard nonlinear solver consider constraints

and variables assumed to be “unimportant” at an optimal solution. The following is an

adaptation of the algorithm proposed in Chung et al. (2010) to BPN. Let y = (x, z) and

ε > 0 . Then, we let

 0() (,) , j j
k k jy g x v z z j J k Kω = − − ∀ ∈ ∀ ∈ (33)

 ,

() max ()

j
kj J k K

y yχ ω
∈ ∈

= (34)

 () max{0, ()}y yχ χ+ = (35)

 () {(,) | () () },j

kw y j k J K y yε ω χ ε+= ∈ × ≥ − (36)

where wε (y) represents “active” constraints at y . In each iteration of this algorithm we

limit the number of iterations of the solver. Let ()n
WA y denote the solution from n

iterations of the solver, starting from y , applied to the following problem:

0

,
() : min ()

1 s.t. 0
(1)

N

j
j W

x z
W f x

z z
N α ∈

+ ≤
− ∑

BP

 (37)

 0(,) , (,)j
k jg x v z z j k W− ≤ ∈ (38)

 0, jz j≥ ∀ (39)
 .x X∈

We note that for j J∈ such that (,)j k W∉ for any k K∈ , jz in ()N WBP can be set to

zero.

Algorithm 2:

Data: y0 initial guess for variable values, ε > 0 , 0υ > , and 0n > an integer.

 18

Step 0: Set i = 0 and initial working set Wi = wε (yi) .

Step 1: Compute 1 ()
i

n
W iiy A y+ = .

Step 2: Compute 1()iyχ + .

If 1() 0iyχ + ≤ and 1() ()i iy yχ χ υ+ − ≤

 STOP,

 else compute 1(),iw yε +

 1 1{ ()},i i iW W w yε+ += ∪

 Replace i by 1i + and go to Step 1.

In Algorithm 2, we hope to reduce the solution time by considering only the

active constraints in the optimization.

3. Algorithm 3: Exponential Smoothing of Max-Function

We next introduce exponential smoothing for BPN. Let L = 0,1,2,...,m{ } and

 g0(x,v) = 0 for all x and v . Then, the following equations represent the exponential

smoothing of the max-function in (26) (Polak, Womersley, & Yin, 2008):

 0 0(,) (,) , j j
k kx z g x v z j J k Lη = − ∀ ∈ ∀ ∈ (40)

 0 0

(,) max (,),
k L

j j
kx z x z j Jζ η

∈
= ∀ ∈ (41)

and

 0 0

0 0

0

(,) (,)1(,) (,) log ,
j

km
j j
p

k

jp x z x z
x z x z e j J

p

ζη
δ ζ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=

−⎛ ⎞
⎜ ⎟= + ∀ ∈
⎜ ⎟
⎝ ⎠
∑ (42)

where 0p > is a smoothing parameter. Thus, replacing the reliability constraint in (26)

by (42) we obtain the following approximation to BPN:

 19

0

0 0
1

,
: min ()

1 (,) 0
(1)

 .

Np

N
j
p

j

x z
f x

z x z
N

x X

δ
α =

+ ≤
−

∈

∑

BP

 (43)

If all the limit-state functions are continuously differentiable, which we assume they are

in this thesis, then δ p
j (x, z0), j ∈ J , are also continuously differentiable.

We improve the quality of the smoothing approximation as we increase the value

of p . That is, the error in the constraint due to smoothing vanishes, as p → ∞ (Polak,

Womersley, & Yin, 2008). Our third algorithm then takes the following form:

Algorithm 3: Apply a standard nonlinear solver to BPNp.

B. ALGORITHMS WITH INCREASING SAMPLE SIZE

We next introduce another approach, which adaptively increases the sample size

during the optimization process. This approach intends to avoid using unnecessarily large

sample sizes. Suppose that

 { }| () 0, 1, 2,..., ,jX x f x j q= ≤ = (44)

where f j (x) represents nonlinear and non-negativity constraints and

 0 0 0
1

1(,) (,)
(1)Np

N
j
p

j
x z z x z

N
ς δ

α =
= +

− ∑ (45)

represents the reliability constraint defined in (43).

Moreover, let

 { }00 1, ...,
(,), max ()(,) max ,j

NpNp j q
x z f xx z ςψ == (46)

 { }0 0(,) max 0, (,) ,Np Npx z x zψ ψ+ = (47)

and

0 0,
(,) min max (,) () ,{{Np Nph
x z x z f x h

ξ
θ ψ + ′= − +∇

00 0 0 0max (,) (,) (,) (,) ,[Np Np x Np z Npx z x z x z h x zς ψ ς ς ξ+ ′ ′− +∇ +∇

 2 2
01,...,

1 1max{ () (,) () } + + .
2 2

]} }j j
Npj q

f x x z f x h hψ ξ+=
′− +∇ (48)

 20

We note that the calculation of 0(,)Np x zθ requires the solution of a convex quadratic

program and can therefore be carried out in finite time (Royset, 2010a). We use these

terms in the definition of Algorithms 4 and 5 below.

1. Algorithm 4: Adaptive Sample-Size Algorithm

Algorithm 4 is similar to one described in Royset (2010a), but includes the use of

smoothing; see Royset (2010b). Let 0(,)n
NpA x z denote the solution from n iterations,

starting from x and 0z , of a standard nonlinear solver applied to BPNp.

Algorithm 4:

Data: 0N initial sample size, 0 0p > initial smoothing parameter, (0.1]s∈ sample-size

increase factor, x0 initial design vector, ε > 0 error control threshold, (0,1)e∈ decrease

factor for ε , sample set 1 2(, ,...)v v ′Ω = generated by independent sampling of ,V and n

an integer.

 Step 0: Set i = 0 and 0 0iz = .

Step 1: Compute 1 0 1 0(,) (,)
i i

n
i i N p i ix z A x z+ + =

Step 2: Compute 1 0 1(,)
i iN p i ix zθ + + and 1 0 1(,)

i iN p i ix zψ + +

 If 1 0 1(,)
i iN p i ix zθ ε+ + ≥ − and 1 0 1(,)

i iN p i ix zψ ε+ + ≤

 Set { }4min ,1 10iN sN= ×⎢ ⎥⎣ ⎦% ,

 1i iN N N+ = + % ,

 1 1 /1000i ip N+ += ,

 and replace ε by eε .

 else

 1i iN N+ = , 1i ip p+ = .

 21

Step 3: Replace i by 1i + and go to Step 1.

2. Algorithm 5: Adaptive Sample Size Algorithm with Active-Set
Strategy

Algorithm 5 is a modification of Algorithm 4. In this algorithm we only consider

a working set of sample points, denoted by ,S in each iteration. We use the same

parameters as in Algorithm 4, but additionally introduce a parameter γ that we use to

determine which sample points to include in S . Algorithm 5 is identical to Algorithm 4

when γ = ∞ . Let 0(,)n
NpSA x z denote the solution from n iterations, starting from x and

0z , of the solver as applied to the following problem:

0

0 0

,
: min () 1 (,) 0,

(1)
 .

NpS

j
p

j S

x z
f x

z x z
N

x X

δ
α ∈

+ ≤
−

∈

∑

BP

 (49)

We also define 0(,)NpS x zθ by (48) where (46) is replaced by

 { }0 0 1,...,
(,) max (,), max () ,j

NpS NpS j q
x z x z f xψ ς

∈
= (50)

where

 0 0 0
1(,) (,).

(1)NpS
j
p

j S
x z z x z

N
ς δ

α ∈
= +

− ∑ (51)

Algorithm 5:

Data: As in Algorithm 4 and γ > 0 .

Step 0: Set i = 0 , 0 0iz = , and 1 2{ , ,..., }iN
iS v v v= .

 Step 1: Compute 1 0 1 0(,) (,)
i i i

n
i i N p S i ix z A x z+ + = and

{ }1{1,2,..., } | (,) 0 .j

i iS j N g x v γ+= ∈ + >%

 Step 2: Compute 1 0 1(,)
i i i iN p S x zθ + +% and 1 0 1(,)

i i i iN p S x zψ + +%

 If 1 0 1(,)
i i i iN p S x zθ ε+ + ≥ −% and 1 0 1(,)

i i i iN p S x zψ ε+ + ≤%

 22

 Set { }4min ,1 10iN sN= ×⎢ ⎥⎣ ⎦% ,

 1i iN N N+ = + % ,

{ }1 1 1{1,2,..., } | (,) 0j

i i iS j N g x v γ+ + += ∈ + >

 1 1 /1000i ip N+ += , and replace ε by eε .

 else

 1i iN N+ = , 1i ip p+ = , and 1 .i iS S S+ = ∪ %

Step 3: Replace i by 1i + and go to Step 1.

We next compare the five algorithms described in this chapter on six test

examples from the literature.

 23

IV. NUMERICAL EXAMPLES

In order to evaluate the quality of solutions obtained by Algorithms 1–5 we use a

method proposed by Royset (2010a). That procedure gives a confidence interval for a

measure of distance, called theta, between a design x and a Fritz-John point (e.g.,

Bertsekas, 1999, pp. 323–335) of BP and a confidence interval for constraint violation in

BP. If the confidence interval for theta for a given x degenerates to the point zero and the

constraint violation is nonpositive, then x is a feasible Fritz-John point of BP. If the left

end point of the confidence interval for theta as well as the right end point of the

confidence interval for the constraint violation are close to zero for a specific x , then x

is near a Fritz-John point.

We test Algorithms 1–5 on six engineering design examples from the litrature.

These examples range from simple models with two design variables to complicated

structural designs; see Table 2 for an overview of the examples with number of design

variables (# DV), limit state functions (# LS), and random variables (# RV). The

examples include a mix of both linear and nonlinear objective and limit-state functions.

We refer to the Appendix for detailed information about the examples. We implement

Algorithms 1–5 in MATLAB and use the TOMLAB/SNOPT (Holmstrom, 1999) as

nonlinear solver. The computations are run on a desktop computer with 3.25 GB RAM

and 3.16 GHz processor speed. We use 1− α = 0.001349898 in examples, which

corresponds to the 3− quantile of the standard normal distribution.

 24

Example Description # DV # LS # RV

1
Analytical example (Hock & Schittkowski,

1981).
2 2 2

2
Design of a cantilever beam subject to horizontal

and vertical loads (Eldred & Binchon, 2006).
2 2 4

3
Design of a rectangular short column (Bichon,

Mahadevan, & Eldred, 2009).
2 1 3

4

Design of a uniform column of tubular section

with hinge joints at both ends subject to a

random compressive load (Rao, 2009, pp. 10-

14)..

2 2 1

5
Design of a speed reducer (Rao, 2009, pp. 472-

473).
7 9 7

6
Vehicle design considering side-impact

crashworthiness (Samson et al. 2009).
11 10 7

Table 2. Overview of Examples (# DV Denotes Number of Design Variables, # LS
Denotes Number of Limit-state Functions, # RV Denotes Number of Random

Variables)

Tables 3–8 show numerical results for Algorithms 1–3 when applied to Examples

1–6. Here, we set algorithm parameters , ,nε ,p and υ equal to 0.001, 5, 1000, and

61 10−× respectively. The sample size N is varied. We stop Algorithms 1 and 3 when

SNOPT’s default optimality tolerance is satisfied. Algorithm 2 stops as specified by its

Step 2.

 25

Example 1 Algorithm
Objective

Function Value

Solution Time

(seconds)
Theta Interval

1 15.867436 5.9 (− 0.0901,0]
2 15.867436 0.1 (− 0.0905,0] N = 1000
3 15.867808 1.6 (− 0.0779,0]
1 15.873157 213.2 (− 0.0163,0]
2 15.873157 0.6 (− 0.0165,0] N = 5000
3 15.873291 7.4 (− 0.0217,0]
1 15.872825 1406.1 (− 0.0042,0]
2 15.872824 0.7 (− 0.0032,0] N = 10000
3 15.873006 15.9 (− 0.0027,0]

Table 3. Results for Algorithms 1–3 on Example 1

Table 3 shows that Algorithms 1–3 with a larger sample size yield a smaller theta

interval, which means that the corresponding solutions become closer to a Fritz-John

point as N increases. That is, the design quality improves as N increases. However, the

solution time for Algorithm 1 increases dramatically with larger sample sizes.

Example 2 Algorithm
Objective

Function Value

Solution Time

(seconds)
Theta Interval

1 9.592329 10.6 (− 724.3833,0]
2 9.592329 0.4 (− 723.3969,0] N = 1000
3 9.592329 24.4 (− 707.6998,0]
1 9.697515 298.7 (− 379.4498,0]
2 9.697515 48.9 (− 385.1690,0] N = 5000
3 9.697515 30.3 (− 384.0893,0]
1 9.818805 1966.6 (− 230.7896,0]
2 9.818805 199.4 (− 225.4224,0] N = 10000
3 9.818805 42.3 (− 228.1197,0]

Table 4. Results for Algorithms 1–3 on Example 2

Table 4 shows that the designs computed with the given sample sizes are not

particularly close to a Fritz-John point as the theta intervals are large. For this example

we compute a design with theta interval (−1.3523,0] with a sample of size 52 10× in

1207.8 seconds using Algorithm 3.

 26

Example 3 Algorithm
Objective

Function Value

Solution Time

(seconds)
Theta Interval

1 236.350524 5.3 (− 0.0468,0]
2 236.350525 0.1 (− 0.0475,0] N = 1000
3 236.422249 4.9 (− 0.0434,0]
1 246.780726 152.2 (− 0.0452,0]
2 246.780726 0.2 (− 0.0474,0] N = 5000
3 246.794029 13.7 (− 0.0463,0]
1 247.759968 1020.8 (− 0.0644,0]
2 247.760098 1.1 (− 0.0657,0] N = 10000
3 247.769011 30.3 (− 0.0636,0]

Table 5. Results for Algorithms 1–3 on Example 3

Example 4 Algorithm

Objective

Function Value

Solution Time

(seconds)
Theta Interval

1 26.726018 2.0 (− 0.6408,0]
2 26.726018 0.2 (− 0.6388,0] N = 1000
3 26.726054 5.1 (− 0.6323,0]
1 26.740881 17.3 (− 0.0916,0]
2 26.740881 2.8 (− 0.0916,0] N = 5000
3 26.740904 31.6 (− 0.0982,0]
1 26.742723 435.8 (− 0.0982,0]
2 26.742723 9.8 (− 0.0982,0] N = 10000
3 26.742745 56.9 (− 0.0982,0]

Table 6. Results for Algorithms 1–3 on Example 4

Example 5 Algorithm
Objective

Function Value

Solution Time

(seconds)
Theta Interval

1 3469.238339 3.2 (− 8.2179,0]
2 3469.238338 0.2 (− 8.2447,0] N = 1000
3 3472.067164 14.1 (− 8.2455,0]
1 3723.733266 17.8 (− 0.7182,0]
2 3723.733267 1.1 (− 0.6977,0] N = 5000
3 3725.084942 86.9 (− 0.7243,0]
1 3760.540797 1500.0 (− 0.1234,0]
2 3760.540798 4.3 (− 0.1256,0] N = 10000
3 3761.796161 156.1 (− 0.1216,0]

Table 7. Results for Algorithms 1–3 on Example 5

 27

We see in Tables 3–7 that for Algorithm 2, the solution times with different

sample sizes are close, meaning that Algorithm 2 is not highly affected by the increase in

sample size.

Example 6 Algorithm
Objective

Function Value

Solution Time

(seconds)
Theta Interval

1 24.597346 2.6 (− 0.4643,0]
2 24.597347 0.2 (− 0.4619,0] N = 1000
3 24.605073 7.3 (− 0.4532,0]
1 24.774812 20.8 (− 0.0288,0]
2 24.774808 0.8 (− 0.0289,0] N = 5000
3 24.779162 29.6 (− 0.0265,0]
1 24.850419 118.0 (− 0.0124,0]
2 24.850436 1.9 (− 0.0135,0] N = 10000
3 24.853971 68.8 (− 0.0086,0]

Table 8. Results for Algorithms 1–3 on Example 6

Tables 3–8 show that the objective function values computed with Algorithms 1

and 2 are close to each other. However, the solution times, which are quite similar for small

sample sizes, differ as we increase the sample size. This is because we add one more

variable and constraint for every limit-state function for each increment in the sample size.

For example, the Example 5 solution-time ratio for Algorithm 1 to Algorithm 2 is 16 for

1000N = , while it is 349 for 10000N = . Therefore, we conclude that for more complex

problems, Algorithm 1 has large memory and longer solution time requirements. For

Algorithm 3, the objective function value is worse than that of Algorithms 1 and 2.

However, we do not see a dramatic increase in solution times with larger sample sizes for

Algorithm 3. We have the largest increase in solution time in Example 4, where the time

for 10000N = is 11 times larger than that for 1000N = . However, the solution time for

Algorithm 1 increases by a factor of 218 for the same example. We next discuss the

differences in solutions for different algorithm parameter changes.

Although we see that Algorithm 2 is able to solve Examples 1–6 quickly and with

high accuracy, the choice of user-defined algorithm parameters yields differences in

solution times. Tables 9–12 present solution times for Algorithm 2 in seconds for different

 28

sample sizes as the algorithm parameters change. The row numbers 0.01, 0.001 and 0.0001

and the column numbers from 1 to 10 are the values for ε and n , respectively.

ε Iteration Limit for the Solver (n)

 1 2 3 4 5 6 7 8 9 10
0.01 28.7 16.8 8.4 5.7 4.4 4.8 4.4 5.6 6.2 8.4

0.001 29.2 17.3 9.6 7.9 6.3 6.7 7.7 7.1 7.6 9.6
0.0001 29.9 18.2 10.9 8.7 7.0 7.8 7.5 7.8 8.3 10.0

Table 9. Run Times (sec) for Algorithm 2 on Example 5 with N = 12000 Given Different
Algorithm Parameter Settings

Table 9 shows that as ε increases the solver needs more time. Moreover, the

computation times improve from 1n = through 5n = , and gradually deteriorate for

larger values of n . But in Table 9 we see that the choice of algorithm parameters does

not yield much different solution times for Example 5 with N = 12000 .

ε Iteration Limit for the Solver (n)

 1 2 3 4 5 6 7 8 9 10
0.01 335 212 146 153 187 215 148 662 1157 149

0.001 372 238 357 335 429 632 691 775 1139 1586
0.0001 417 302 632 538 612 769 862 944 1207 1691

Table 10. Run Times (sec) for Algorithm 2 on Example 5 with N = 120000 Given
Different Algorithm Parameter Settings

We see in Table 10 that with a larger sample the variability in solution times is

more evident. Moreover, we see that the results in Table 10 do not follow the

characteristics of those on Table 9, where the run times are unevenly increasing or

decreasing with respect to parameter choices.

ε Iteration Limit for the Solver (n)

 1 2 3 4 5 6 7 8 9 10
0.01 6.24 2.22 2.61 3.44 3.06 3.37 3.08 3.03 3.05 2.99

0.001 4.17 4.65 5.09 5.08 5.12 5.21 5.21 5.28 5.23 5.36
0.0001 6.43 5.18 6.14 6.11 6.09 6.20 6.19 6.24 6.22 6.19

Table 11. Run Times (sec) for Algorithm 2 on Example 6 with N = 12000 Given Different
Algorithm Parameter Settings

 29

We see in Table 11 that larger ε values yield longer run times. However, we do

not see a clear increasing or decreasing pattern in solution times depending on .n

ε Iteration Limit for the Solver (n)

 1 2 3 4 5 6 7 8 9 10
0.01 174 85 45 45 46 47 47 47 49 49

0.001 117 130 191 150 152 151 149 151 150 150
0.0001 254 199 305 284 288 287 287 287 287 288

Table 12. Run Times (sec) for Algorithm 2 on Example 6 with N = 120000 Given
Different Algorithm Parameter Settings

Tables 9–12 show that there is no single parameter value that is best in all

examples for Algorithm 2. Thus, we conclude that the parameter choice gives different

solution-time results not only for the different examples but also for the same example

with different sample sizes. Furthermore, ε values larger than 0.01 effectively lead to

large working sets and turn Algorithm 2 into Algorithm 1. We next discuss the effects of

parameter choice for Algorithm 2 on solution quality.

We select 0.01ε = and 1n = as the base parameter choices for Tables 13 and 14.

We then optimize with different values of ε and ,n and then calculate the absolute

differences in the objective function values from that obtained using the base values of ε

and .n

ε Iteration Limit for the Solver (n)

 1 2 3 4 5 6 7 8 9 10
0.01 0 0.8 0.8 0.09 0.09 0.09 0.09 0.09 0.09 0.09

0.001 136 0.04 25 3360 0.09 0.09 0.09 0.09 0.09 0.09
0.0001 113 4.2 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Table 13. Objective Function Value Differences (in 10-7) for the Parameter Selections with
Respect to Objective Function of the Base Parameter Choice (with Algorithm 2

on Example 5 with 12000)N =

 30

ε Iteration Limit for the Solver (n)

 1 2 3 4 5 6 7 8 9 10
0.01 0 3.7 4.1 3.7 3.7 3.7 3.7 3.7 3.7 3.7

0.001 3.0 6.7 5.3 7.7 3.7 3.7 3.7 3.7 3.7 3.7
0.0001 16 204 11 11 3.7 3.7 3.7 3.7 3.7 3.7

Table 14. Objective Function Value Differences (in 10-7) for the Parameter Selections with
Respect to Objective Function of the Base Parameter Choice (with Algorithm 2

on Example 6 with 120000)N =

We see in Tables 13 and 14 that there is no dramatic variability in objective function

values computed with various parameters. Thus, we conclude that the parameter choice

does not affect the quality of the design. We next discuss Algorithm 3 with various

smoothing parameter p values.

We apply Algorithm 3 on Example 1 with a sample size of 15000. We optimize

the design with different values of ,p compute the theta interval in order to evaluate the

design quality, and display the results in Table 15.

p
Objective Function

Value

Solution Time

(seconds)
Theta Interval

1 20.62291723 24.5 (− 1.4575161,0]
10 16.29547551 17.2 (− 0.5836538,0]

100 15.88688647 27.2 (− 0.3088083,0]
1000 15.87386166 30.8 (− 0.0062922,0]

10000 15.87370318 33.8 (− 0.0064495,0]
100000 15.87370048 35.4 (− 0.0062150,0]

1000000 15.87370032 38.5 (− 0.0063207,0]
10000000 15.87370031 41.1 (− 0.0061170,0]

Table 15. Algorithm 3 on Example 1 with Different p Values

Table 15 shows that design quality improves as we increase the value of p .

However, we do not have much improvement in the theta interval after p = 1000 .

Instead, we see only run-time increases with larger values of p . Since large p values

may result in ill-conditioning and slow convergence of the solver, we use p = 1000 as

default.

 31

We conclude that Algorithm 1 cannot handle large sample sizes due to memory

difficulty. In fact, Algorithm 1 solves NBP that include more than Nm nonlinear

constraints and N variables. Algorithm 2 may need to consider the same number of

constraints and variables, but the numerical tests indicate that its active-set strategy is

reasonably efficient in practice. On solutions of Examples 1–6, we find that ()N WBP

contains on average 0.2% of nonlinear constraints that we have in NBP . Finally, in

Algorithm 3 in contrast to Algorithms 1 and 2 we have only one nonlinear constraint

associated with limit-state functions and number of design variables does not increase

with sample size. Therefore, Algorithms 2 and 3 efficiently compute near-optimal

designs for large N . Algorithm 2 can handle large samples, but lacks the ability to deal

with extremely large problems. But we apply Algorithm 3 on Example 6 with a sample

size of 71 10× and compute the design, with a (0.0006,0]− theta interval in 18 hours.

Thus, we conclude that Algorithm 3 is able to solve BPN with exceptionally large sample

sizes. We next discuss consequences of various algorithm parameters for Algorithms 4

and 5.

We apply Algorithm 4 to Example 6 to see the theta interval differences due to

the choice of algorithm parameters. Table 16 presents the results for Algorithm 4 with a

run-time limit used as the stopping criterion. That is, the algorithm stops after a specific

time, here 15 minutes, and evaluates the quality of the last computed design.

e s n Theta Interval Final Sample Size

0.1 0.3 15 (− 0.0273379,0] 10598
0.1 0.3 20 (− 0.0175738,0] 13777
0.1 0.5 15 (− 0.0089000,0] 45624
0.1 0.5 20 (− 0.0089010,0] 45624
0.3 0.3 15 (− 0.0202027,0] 30267
0.3 0.3 20 (− 0.0079490,0] 69347
0.3 0.5 15 (− 0.0599124,0] 45624
0.3 0.5 20 (− 0.0041565,0] 85624
0.5 0.3 15 (− 0.0116882,0] 89342
0.5 0.3 20 (− 0.0035743,0] 69347
0.5 0.5 15 (− 0.0054132,0] 95624
0.5 0.5 20 (− 0.0077265,0] 95624

Table 16. Parameter Comparison for Example 6 with Algorithm 4 Starting From Initial
N = 1000 With 15-Minute Run Time Limit

 32

From Table 16, we see that for larger values of e the sample size tends to increase

more compared to smaller e values, which in turn may cause memory difficulty for more

complex structural design examples. We obtain better results with 20n = than with

15n = for fixed e and s . We also see that we get generally better results with 0.5s =

when the other parameters are hold constant. Therefore, we conclude that 0.1e = ,

0.5s = , and 20n = is an appropriate choice for parameter values and use them in the

following calculations. We next present Algorithm 5 results for different γ values.

As discussed in Chapter III, we use γ to determine the active sample points. We

apply Algorithm 5 to Example 1 with various -γ values and construct Table 17 after 15-

minute runs.

γ Constraint Violation Theta Interval Final Sample Size
0.0000001 (−∞ ,1.52274) (− 1.3017056,0] 75624
0.000001 (−∞ ,-0.57666) (− 3.0074925,0] 55624
0.00001 (−∞ ,0.00037) (− 0.0041879,0] 65624

0.0001 (−∞ ,0.00009) (− 0.0017403,0] 55624
0.001 (−∞ ,-0.00201) (− 0.0026550,0] 45624
0.01 (−∞ ,0.00037) (− 0.0004014,0] 45624

1 (−∞ ,-0.00028) (− 0.0001733,0] 145624
10 (−∞ ,-0.00024) (− 0.0009416,0] 385624

100 (−∞ ,0.00047) (− 0.0011301,0] 425624
1000 (−∞ ,-0.00123) (− 0.0009869,0] 95624

10000 (−∞ ,0.00056) (− 0.0007012,0] 95624
100000 (−∞ ,0.00050) (− 0.0009243,0] 105624

1000000 (−∞ ,-0.00014) (− 0.0019971,0] 125624
10000000 (−∞ ,0.00026) (− 0.0018027,0] 135624

Table 17. γ Comparison With Algorithm 5 on Example 1 with Initial
1000, 0.1, 0.5, 20N e s n= = = = with 15-Minute Run Time Limit

Table 17 shows that solution quality improves as we increase γ from 0.0000001

to 1, but degrades for 1γ > . Since the smallest theta interval appears to occur at 1,γ =

we want to investigate the values of γ near 1, and use 0.1, 1, and 10, in the following

calculations.

We present below the results for Algorithms 4 and 5 on Examples 1–6. In order to

show the performance of the algorithms we set a run-time limit as the stopping criterion.

We use different run times in accordance with the complexity of the example. For

 33

relatively simple Examples 1 and 3, we set the time limit to 15 and 30 minutes,

respectively; the time limit is set to 60 minutes for the rest. Rather than setting a time

limit, however, the user may prefer to modify Algorithms 4 and 5 to iteratively check the

design quality and stop when a user-defined quality level is reached. We start with initial

N = 1000 .

 e s n γ
Final Sample

Size

Constraint

Violation
Theta Interval

0.1 0.5 5 - 45624 (−∞ ,0.00014) (− 0.00036,0] Alg. 4 0.3 0.5 5 - 105624 (−∞ ,− 0.00104) (− 0.00047,0]
0.1 0.5 20 0.1 145624 (−∞ ,− 0.00028) (− 0.00017,0]
0.1 0.5 20 1 385624 (−∞ ,− 0.00024) (− 0.00094,0] Alg. 5
0.1 0.5 20 10 425624 (−∞ ,0.00046) (− 0.00113,0]

Table 18. Results for Algorithms 4 and 5 on Example 1 with 15-Minute Run Time

We see in Table 18 that we have the best theta interval with Algorithm 5, when

0.1γ = . The design computed by Algorithm 4 with 0.1e = has also a small theta interval

and its constraint violation is less than for Algorithm 5.

 e s n γ
Final Sample

Size

Constraint

Violation Theta Interval

0.1 0.5 20 - 335624 (−∞ ,0.94085) (− 1.24864,0] Alg. 4 0.3 0.5 20 - 205624 (−∞ ,1.79601) (− 2.15182,0]
0.1 0.5 20 0.1 194581 (−∞ ,0.09473) (− 0.54203,0]
0.1 0.5 20 1 2891871 (−∞ ,0.19126) (− 0.66174,0] Alg. 5
0.1 0.5 20 10 3491871 (−∞ ,0.40577) (− 0.60458,0]

Table 19. Results for Algorithms 4 and 5 on Example 2 with 60-Minute Run Time

Table 19 shows that the sample size rapidly increases for Algorithm 5. However,

Algorithm 5 only considers active constraints. Therefore, Algorithm 4 is more likely to

cause memory difficulty for highly complex structural design examples.

 34

 e s n γ
Final Sample

Size

Constraint

Violation Theta Interval

0.1 0.5 20 - 215624 (−∞ ,0.00000) (− 0.00863,0] Alg. 4 0.3 0.5 20 - 205624 (−∞ ,0.00123) (− 0.00676,0]
0.1 0.5 20 0.1 691871 (−∞ ,7.43356) (− 1.67174,0]
0.1 0.5 20 1 1591871 (−∞ ,0.00034) (− 0.00941,0] Alg. 5
0.1 0.5 20 10 2491871 (−∞ ,0.00095) (− 0.00437,0]

Table 20. Results for Algorithms 4 and 5 on Example 3 with 30-Minute Run Time

From Table 20, we see that Algorithm 5 with 0.1γ = results in an unsatisfactory

solution. Since the theta interval is large and the right end point of the constraint violation

interval is also large, we conclude that the solution is infeasible.

 e s n γ
Final Sample

Size

Constraint

Violation Theta Interval

0.1 0.5 20 - 85624 (−∞ ,− 0.04217) (− 0.09810,0] Alg. 4 0.3 0.5 20 - 75624 (−∞ ,0.07769) (− 0.18332,0]
0.1 0.5 20 0.1 119721 (−∞ ,0.00000) (− 0.17360,0]
0.1 0.5 20 1 129721 (−∞ ,0.52574) (− 0.65265,0] Alg. 5
0.1 0.5 20 10 991871 (−∞ ,− 0.02971) (− 0.09809,0]

Table 21. Results for Algorithms 4 and 5 on Example 4 with 60-Minute Run Time

Table 21 shows that for Example 4, the quality of the designs by Algorithm 4 with

0.1e = and Algorithm 5 with 10γ = are almost equal.

 e s n γ
Final Sample

Size

Constraint

Violation Theta Interval

0.3 0.5 20 - 11389 (−∞ ,1.85124) (− 1.96464,0] Alg. 4 0.8 0.5 20 - 65624 (−∞ ,0.21324) (− 0.24076,0]
0.8 0.5 20 0.1 129721 (−∞ ,0.21682) (− 0.23135,0]
0.8 0.5 20 1 129721 (−∞ ,0.04015) (− 0.05877,0] Alg. 5
0.8 0.5 20 10 129721 (−∞ ,0.08343) (− 0.10257,0]

Table 22. Results for Algorithms 4 and 5 on Example 5 with 60-Minute Run Time

We see in Table 22 that for Example 5, Algorithm 5 yields better theta intervals

and small constraint violations than Algorithm 4.

 35

 e s n γ
Final Sample

Size

Constraint

Violation Theta Interval

0.1 0.5 20 - 65624 (−∞ ,0.00659) (− 0.01540,0] Alg. 4 0.3 0.5 20 - 125624 (−∞ ,0.00000) (− 0.00464,0]
0.1 0.5 20 0.1 2491871 (−∞ ,0.00003) (− 0.00168,0]
0.1 0.5 20 1 2691871 (−∞ ,0.00041) (− 0.00183,0] Alg. 5
0.1 0.5 20 10 2591871 (−∞ ,0.00029) (− 0.00068,0]

Table 23. Results for Algorithms 4 and 5 on Example 6 with 60-Minute Run Time

From Table 23, we see that we obtain a good design with Algorithm 5 when

γ = 10 . The lower end point of the theta interval is almost the same as that obtained after

18 hours using Algorithm 3 with 71 10N = × .

We see in Tables 18–23 that Algorithm 5 is capable of handling larger sample

sizes, and thus Algorithm 5 generally computes better designs compared to Algorithm 4.

Moreover, because Algorithm 5 only considers the active sample points the iterations

take less time compared to Algorithm 4. Therefore, with a stopping criterion based on a

user-defined quality level, Algorithm 5 is likely to be faster.

We next present failure probability and buffered failure probability comparisons

for a given design. For each example, we select the design with the closest theta interval

among the solutions presented in Tables 3–8 and Tables 18–23. We calculate a 95%

confidence interval (CI) using MCS for the failure probability. Using the same sample,

we also estimate the buffered failure probability. Since we use the same sample, we

assume that the error in the buffered failure probability calculation is similar to that in the

failure probability estimate. Table 24 presents the resulting estimates. We see that the

buffered failure probability is greater than the failure probability for the same design as

expected; see Chapter I. On average, the buffered failure probability is 30% of the failure

probability.

 36

Example Design
Theta

Interval
CI for Failure Probability

Buffered Failure

Probability

Estimate

1 8.90895
2.81726 (− 0.00017,0] (0.00052, +/− 0.00005) 0.001329

2 3.88551
2.73362 (− 0.54202,0] (0.000001, +/− 0.0000006) 0.001015

3 9.82582
25 (− 0.00437,0] (0.00052, +/− 0.00005) 0.001402

4 5.45094
0.29593 (− 0.09820,0] (0.00037, +/− 0.000036) 0.000971

5

3.6
0.72

19.52866
7.56277
8.28022
3.47997
5.40634

(− 0.12156,0] (0.00047, +/− 0.000046) 0.004488

6

0.5
1.43498

0.5
1.25441
1.05796

0.5
0.34

0.345
15
15

(− 0.00068,0] (0.00031, +/− 0.00003) 0.001382

Table 24. Computational Comparisons of Failure Probabilities and Buffered Failure
Probabilities

 37

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Reliability-based design optimization (RBDO) aims to determine a minimum-cost

design for an engineering structure subject to one or more reliability constraints; this

thesis considers models having a single reliability constraint. Traditionally, the reliability

constraint is given in terms of an upper bound on the failure probability, i.e., the

probability that the system performs unsatisfactory. This approach is theoretically and

computationally troublesome since a constraint on the failure probability is difficult to

deal with in the algorithms used to solve the nonlinear programs arising in RBDO. This

thesis considers an alternative approach to RBDO based on “buffered failure probability,”

and examines five solution algorithms, four of which are developed in this thesis, that use

sample-average approximations. Buffered failure probability is more conservative than

the traditional failure probability. Thus, a design that satisfies a reliability constraint

based on the buffered failure probability also satisfies one based on the failure

probability. Finally, the buffered failure probability is much easier to handle in

optimization algorithms as it results in smooth and possibly convex optimization

problems.

The buffered failure probability approach uses sample averages to estimate

expectations. In numerical tests, we show that the sample size needs to be set relatively

large to ensure high-quality solutions, and that one standard algorithm may break down

because of the resulting memory and run-time requirements. We develop new algorithms

that overcome this difficulty and obtain an average speed-up in solution time by a factor

of 560 in comparison with the existing methodology based on a standard nonlinear

solver. We are able to handle sample sizes two orders of magnitude larger in comparison

with the existing method. We also avoid the need for preselecting sample sizes, which

can be difficulty in practice, by using adaptive sample-adjustment schemes.

We examine the difference between the failure probability and buffered failure

probability approaches in a stochastic knapsack problem as well as other examples and

 38

find that for these test examples the buffered failure probability averages typically three

times larger than the failure probability for a design computed with buffered failure

probability approach. Hence, a design based on the buffered failure probability approach

may result in a more costly but more reliable design than that obtained using a failure

probability approach. However, in view of the computational difficulties associated with

this approach, we believe that the buffered failure probability approach is a viable

alternative.

B. SUGGESTED WORK AHEAD

This research area is open to more developments in efficiency and accuracy of the

algorithms. We believe the active-set strategy deserves the interest of future researchers

with the goal to eliminate its sensitivity to user-specified parameters.

 39

LIST OF REFERENCES

Bertsekas, D. P. (1999). Nonlinear programing (2nd ed.). Belmont, MA: Athena
Scientific.

Bichon, B. J., Mahadevan, S., & Eldred, M. S. (May 4–7, 2009). Reliability-based
design optimization using efficient global reliability analysis. Paper AIAA 2009-
2261 in Proceedings of the 50th AIAA/ASME/ACHE/AHS/ASC Structures,
Structural Dynamics, and Material Conference. Palm Springs,CA.

Choi, S. K., Grandhi, R. V., & Canfield, R. A. (2007). Reliability-based structural
design. London, UK: Springer-Verlag.

Chung, H., Polak, E., & Sastry, S. (2010). On the use of outer approximations as an
external active set strategy. Journal of Optimization Theory and Application.
doi:10.1007/s10957-010-9655-8

Conn, A. R., Gould, N. I. M., & Toint, P. L. (1992). LANCELOT: A Fortran package for
large-scale nonlinear optimization (Release A). Springer Series in Computational
Mathematics, 17.

Du, X., & Chen, W. (2004). Sequential optimization and reliability assesment method for
efficient probabilistic design. ASME Journal of Mechanical Design, 126, 225–
233.

Eldred, M. S. & Bichon, B. J. (1–4 May, 2006). Second order reliability formulations in
DAKOTA/UQ. Paper AIAA 2006-1828 in Proceedings of the 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material
Conference. Newport, RI.

Gill, P., Murray, W., & Saunders, M. (1998). User’s guide for SNOPT 5.3: A Fortran
package for large-scale nonlinear programming. Technical Report SOL-98-1.
Standford, CA: Stanford University.

Hock, W., & Schittkowski, K. (1981). Test examples for nonlinear programing codes.
Secaucus, USA: Springer-Verlag, New York.

Holmstrom, K. (1999). The TOMLAB Optimization Environment in MATLAB. Retrieved
5 November 2009, from http://www.ici.ro/camo/journal/v1n1.htm

Lee, J. O., Yang, Y. O. & Ruy, W. S. (2002). A comparative study on reliability-index
and target-performence-based probabilistic structural design optimization.
Computers and Structures, 80, 257–269.

Liang, J., Mourelatos, Z. P., & Tu, J. (2008). A single-loop method for reliability-based
design optimization. International Journal of Product Development, 5, 76–92.

 40

Melchers, R. E. (1999). Structural reliability analysis and prediction (2nd ed.).
Chichester, UK: Wiley.

Polak, E., Womersley, R. S., & Yin, H. X. (2008). An algorithm based on active sets and
smoothing for discretized semi-infinite minimax problems. Journal of
Optimization Theory and Applications, 138(2), 311–328.

Rao, S. S. (2009). Engineering optimization theory and practice (4th ed.). Hoboken, NJ:
John Wiley & Sons.

Rockafellar, R. T., & Royset, J. O. (2010). On buffered failure probability in design and
optimization of structures. Reliability Engineering and System Safety, 95 (5),
499–510.

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk.
Journal of Risk, 2, 21–42.

Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss
distributions. Journal of Banking and Finance, 26, 1443–1471.

Royset, J. O. (2010a). Optimality functions in stochastic programming. Working paper,
Operations Research Department, Naval Postgraduate School, Monterey, CA,
2010. Retrieved 5 February 2010, from
http://faculty.nps.edu/joroyset/docs/Royset_optimfcn.pdf

Royset, J. O. (2010b). Algorithms for stochastic programs with random max-functions
and applications to engineering design using buffered failure probability.
Working paper, Operations Research Department, Naval Postgraduate School,
Monterey CA, 2010.

Royset, J. O., Kiureghian, D., & Polak, E. (2006). Optimal design with probabilistic
objective and constraints. Journal of Engineering Mechanics, 132(1), 107–118.

Rubinstein, R. Y., & Kroese, D.P. (2008). Simulation and Monte Carlo method (2nd ed).
New York, NY: Wiley.

Samson, S., Thoomu, S., Fadel, G., & Reneke, J. (30 August-2 September 2009).
Reliable design optimization under aleatory and epistemic uncertainties. Paper
DETC2009-86473 in Proceedings of ASME 2009 International Design
Engineering Technical Conference & 35th Design Automation Conference. San
Diego.

Schittkowski, K. (1985). User guide to nonlinear programming code, handbook to
optimization program package NLPQL. Stuttgart, Germany: University of
Stuttgart.

 41

Truncated normal distribution. (n.d.) . Retrieved 9 December 2009 from Wikipedia,
http://en.wikipedia.org/wiki/Truncated_normal_distribution

Tu, J., Choi, K. K., & Park, Y. H. (1999). A new study on reliability-based design
optimization. ASME Journal of Mechanical Design, 121, 557–564.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

APPENDIX

This appendix describes the six computational examples tested in this thesis.

Example 1: Analytical problem (Hock & Schittkowski, 1981).

DESIGN VARIABLES

Variable Description
Lower

bound

Upper

bound

 x1 Design variable 2 50

 x2 Design variable 0 50

Table 25. Design Variable Descriptions and Bounds for Example 1

RANDOM VARIABLES

V Description Distribution
Parameters

(μ,σ)

V1 Random vector Normal (25, 0.03)

V2 Random vector Normal (25, 0.03)

Table 26. Random Variable Descriptions and Distribution Parameters for Example 1

Objective function:

min 0.1x1
2x2

2

Limit-state functions:

g1(x,v) = v1 − x1x2

g2(x,v) = v2 − x1
2 − x2

2

 44

Example 2: Cantilever beam (Eldred & Binchon, 2006).

DESIGN VARIABLES

Variable Description
Lower

bound

Upper

bound

 x1 Thickness of the beam (cm) 1 4

 x2 Width of the beam (cm) 1 4

Table 27. Design Variable Descriptions and Bounds for Example 2

RANDOM VARIABLES

V Description Distribution
Parameters

(μ,σ)

V1 Yield stress Normal 4 3(4 10 ,2 10)× ×

V2 Young’s Modulus Normal 7 6(2.9 10 ,1.45 10)× ×

V3 Horizontal loads (kg) Lognormal (5,0.5)

V4 Vertical loads (kg) Lognormal (5,0.5)

Table 28. Random Variable Descriptions and Distribution Parameters for Example 2

Objective function:

min x1x2

Limit-state functions:

g1(x,v) =
600v4

x1
2x2

+
600v3

x1x2
2
− v1

g2 (x,v) =
4000000

v2x1x2

−
v4

2

x1
4 +

v3
2

x2
4

⎛
⎝⎜

⎞
⎠⎟

 − 2.25

 45

Example 3: Rectangular short column (Bichon, Mahadevan, & Eldred, 2009).

DESIGN VARIABLES

Variable Description
Lower

bound

Upper

bound

 x1 Column cross section width (cm) 5 15

 x2 Column cross section depth (cm) 15 25

Table 29. Design Variable Descriptions and Bounds for Example 3

RANDOM VARIABLES

V Description Distribution
Parameters

(μ,σ)

V1 Axial force (kg) Normal (500,100)

V2 Bending moment Normal (2000,400)

V3 Yield stress Lognormal (5,0.5)

Table 30. Random Variable Descriptions and Distribution Parameters for Example 3

Objective function:

min x1x2

Limit-state function:

g(x,v) =
4v2

x1x2v3

+
v1

2

x1
2x2

2v3
2
−1

 46

Example 4: Tubular column (Rao, 2009, pp. 10-14)..

DESIGN VARIABLES

Variable Description
Lower

bound

Upper

bound

 x1 Diameter of the column (cm) 2 14

 x2 Thickness of the tube (cm) 0.2 0.8

Table 31. Design Variable Descriptions and Bounds for Example 4

RANDOM VARIABLES

V Description Distribution
Parameters

(μ,σ)

V Load on the system (kg) Normal (2500, 10)

Table 32. Random Variable Descriptions and Distribution Parameters for Example 4

Objective function:

min 9.82x1x2 + 2x1

Limit-state functions:

g1(x,v) =
v

πx1x2

− 500

2 2 2
2 1 2

1 2

(,) 1.7 ()vg x v x x
x x

π
π

= − −

 47

Example 5: Speed reducer (Rao, 2009, pp. 472-473).

DESIGN VARIABLES

Variable Description
Lower

bound

Upper

bound

 x1 Face width (cm) 2.6 3.6

 x2 Module of teeth (cm) 0.7 0.8

 x3 Number of teeth on pinion 17 28

 x4 Length of shaft 1 (cm) 7.3 8.3

 x5 Length of shaft 2 (cm) 7.3 8.3

 x6 Diameter of shaft 1 (cm) 2.9 3.9

 x7 Diameter of shaft 2 (cm) 5.0 5.5

Table 33. Design Variable Descriptions and Bounds for Example 5

RANDOM VARIABLES

V Description Distribution
Parameters

(μ,σ)

V1 Material property Normal (x1, 0.03)

V2 Material property Normal (x2 , 0.03)

V3 Material property Normal (x3, 0.03)

V4 Material property Normal (x4 , 0.03)

V5 Material property Normal (x5 , 0.03)

V6 Material property Normal (x6 , 0.03)

V7 Material property Normal (x7 , 0.03)

 48

Table 34. Random Variable Descriptions and Distribution Parameters for Example 5

Objective function:

2 2 2 2
1 2 3 3 1 6 7

3 3 2 2
6 7 4 6 5 7

min 0.7854 (3.33333 14.9334 43.0934) 1.508 ()

7.477() 0.7854()

x x x x x x x

x x x x x x

+ − − + +

+ + +

Limit-state functions:

g1(x,v) =
27

v1v2
2v3

−1

g2 (x,v) =
397.5

v1v2
2v3

2
−1

g3(x,v) =
1.93v4

3

v2v3v6
4
−1

g4 (x,v) =
1.93v5

3

v2v3v7
4
−1

0.52
74

2 3

5 3
6

745 1.69 10

(,) 1100
0.1

v
v v

g x v
v

⎡ ⎤⎛ ⎞
⎢ ⎥+ ×⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦= −

0.52
85

2 3

6 3
7

745 1..575 10

(,) 850
0.1

v
v v

g x v
v

⎡ ⎤⎛ ⎞
⎢ ⎥+ ×⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦= −

g7 (x,v) = v2v3 − 40

6
8

4

(1.5 1.9)(,) 1vg x v
v
+

= −

7
9

5

(1.1 1.9)(,) 1vg x v
v
+

= −

 49

Example 6: Vehicle side-impact crashworthiness problem (Samson et al. 2009).

DESIGN VARIABLES

Variable Description
Lower

bound

Upper

bound

x1 Thickness of B-pillar inner (cm) 0.5 1.5

x2 Thickness of B-pillar reinforce (cm) 0.5 1.5

x3 Thickness of floor side inner (cm) 0.5 1.5

x4 Thickness of cross member (cm) 0.5 1.5

x5 Thickness of door beam (cm) 0.5 1.5

x6 Thickness of door belt line (cm) 0.5 1.5

x7 Thickness of roof rail (cm) 0.5 1.5

x8 Material property of B-pillar inner 0.345 0.345

x9 Material property of floor side inner 0.345 0.345

x10 Barrier hitting height (cm) 15 15

x11 Barrier hitting position (cm) 15 15

Table 35. Design Variable Descriptions and Bounds for Example 6

 50

RANDOM VARIABLES

V Description Distribution
Parameters

(μ,σ)

V1 Material property Normal (x1, 0.03)

V2 Material property Normal (x2 , 0.03)

V3 Material property Normal (x3, 0.03)

V4 Material property Normal (x4 , 0.03)

V5 Material property Normal (x5 , 0.03)

V6 Material property Normal (x6 , 0.03)

V7 Material property Normal (x7 , 0.03)

Table 36. Random Variable Descriptions and Distribution Parameters for Example 6

Objective functions:

min 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7

Limit-state function:

g1(x,v) = 1.16 − 0.3717v2v4 − 0.00931v2x10 − 0.484v3x9 + 0.01343v6x10 −1

2 1 2 1 8 2 7 3 5 5 10

6 9 8 11 10 11

(,) 0.261 0.0159 0.188 0.019 0.0144 0.0008757
 0.080445 0.00139 0.00001575 0.32
g x v v v v x v v v v v x

v x x x x x
= − − − + + +

+ − −

3 5 1 8 1 9 2 6 2 7

3 8 3 9 5 6 5 10 6 10

8 11

(,) 0.214 0.00817 0.131 0.0704 0.03099 0.018
 0.0208 0.121 0.00364 0.0007715 0.0005354
 0.00121 0.32

g x v v v x v x v v v v
v x v x v v v x v x
x x

= + − − + − +

+ − + − +
−

g4(x,v) = 0.74 − 0.61v2 − 0.163v3x8 + 0.001232v3x10 − 0.166v7x9 + 0.0227v2
2 − 0.32

g5 (x,v) = 28.98 − 3.81v3 − 4.2v1v2 + 0.0207v5x10 + 6.63v6x9 − 7.7v7x8 + 0.32x9x10 − 32

 51

6 3 10 1 2 2 8 5 10 7 8

8 9

(,) 33.86 2.95 0.1792 5.057 11 0.0215 9.98
 22 32
g x v v x v v v x v x v x

x x
= + + − − − − +

−

g7 (x,v) = 46.36 − 9.9v2 −12.9v1x8 + 0.1107v3x10 − 32

g8(x,v) = 4.72 − 0.5v4 − 0.19v2v3 − 0.0122v4x10 + 0.009325v6x10 + 0.000191x11
2 − 4

g9 (x,v) = 10.58 − 0.674v1v2 − 1.95v2x8 + 0.02054v3x10 − 0.0198v4 x10 + 0.028v6x10 − 9.9

g10(x,v) = 16.45 − 0.489v3v7 − 0.843v5v6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x11
2 −15.57

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Johannes O. Royset, PhD
Department of Operations Research
Monterey, California

4. R. Kevin Wood, PhD
Department of Operations Research
Monterey, California

5. Habib Gürkan Başova
Kara Kuvvetleri Komutanlığı
Ankara, TURKEY

6. Kara Harp Okulu Kutuphanesi
Bakanlıklar - 06100
Ankara, TURKEY

7. Savunma Bilimleri Enstitüsü

Kara Harp Okulu
Bakanlıklar, Ankara, TURKEY

8. METU Library

Ortadogu Teknik Universitesi
 Inonu Blv.
 Ankara, TURKEY

9. Bilkent University Library

Bilkent Universitesi
 Ankara, TURKEY

10. Ekrem Erdem, PhD

Iktisadi ve Idari Bilimler Fakultesi
 Melikgazi, Kayseri, TURKEY

